Convergence of multistep methods for Volterra integro-differential equations
نویسندگان
چکیده
منابع مشابه
Multistep collocation methods for Volterra integro-differential equations
Keywords: Volterra integro-differential equations Multistep collocation Superconvergence Stability a b s t r a c t Multistep collocation methods for Volterra integro-differential equations are derived and analyzed. They increase the order of convergence of classical one-step collocation methods, at the same computational cost. The numerical stability analysis is carried out and classes of A 0-s...
متن کاملLinear Multistep Methods for Volterra Integral and Integro-Differential Equations
In these appendices we present, successively, I conditions for the existence of a unique solution of (1.1) and (1.2); II three tables of coefficients of forward differentiation formulas, and of two common LM formulas for ODEs, viz., backward differentiation formulas and Adams-Moulton formulas; III two lemmas which are needed in: IV proofs of the main results of this paper, as far as they are no...
متن کاملSome New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations
This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...
متن کاملSplitting Methods for Partial Volterra Integro-Differential Equations
The spatial discretization of initial-boundary-value problems for (nonlinear) parabolic or hyperbolic PDEs with memory terms leads to (large) systems of Volterra integro-differential equations (VIDEs). In this paper we study the efficient numerical solution of such systems by methods based on linear multistep formulas, using special factorization (or splitting) techniques in the iterative solut...
متن کاملConvergence Analysis of the Legendre Spectral Collocation Methods for Second Order Volterra Integro-Differential Equations
A class of numerical methods is developed for second order Volterra integrodifferential equations by using a Legendre spectral approach. We provide a rigorous error analysis for the proposed methods, which shows that the numerical errors decay exponentially in the L∞-norm and L-norm. Numerical examples illustrate the convergence and effectiveness of the numerical methods. AMS subject classifica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 1983
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap-43-2-121-139